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Essay

Everybody knows that sleep is 
important, yet the function of 
sleep seems like the mythological 

phoenix: “Che vi sia ciascun lo dice, 
dove sia nessun lo sa” (“that there is 
one they all say, where it may be no one 
knows,” Wolfgang Amadeus Mozart 
and Lorenzo da Ponte [1790], Così
fan tutte). But what if the search for an 
essential function of sleep is misguided? 
What if sleep is not required but rather 
a kind of extreme indolence that 
animals indulge in when they have no 
more pressing needs, such as eating or 
reproducing? In many circumstances 
sleeping may be a less dangerous 
choice than roaming around, wasting 
energy and exposing oneself to 
predators. Also, if sleep is just one out 
of a repertoire of available behaviors 
that is useful without being essential, it 
is easier to explain why sleep duration 
varies so much across species [1–4]. 
This “null hypothesis” [5–7] would 
explain why nobody has yet identified a 
core function of sleep. But how strong 
is the evidence supporting it? And are 
there counterexamples? 

Sleep Function: The Null 
Hypothesis

So far the null hypothesis has survived 
better than alternatives positing some 
core function for sleep [8–10]. In 
what follows we shall test the null 
hypothesis by considering three of its 
key corollaries. If the null hypothesis 
were right, we would expect to find: 
(1) animals that do not sleep at all; 
(2) animals that do not need recovery 
sleep when they stay awake longer; and, 
finally, (3) that lack of sleep occurs 
without serious consequences. 

Corollary 1: Are There Animals 
That Do Not Sleep?

Sleep is a reversible condition of 
reduced responsiveness usually 
associated with immobility. The 
decreased ability to react to stimuli 
distinguishes sleep from quiet 

wakefulness, while its reversibility 
distinguishes sleep from coma. Only 
a small number of species—mostly 
mammals and birds—have been 
evaluated in detail with respect to 
sleep. Most studies found signs of 
sleep, both behavioral (quiescence 
and hyporesponsivity) and 
electrophysiological (e.g., the slow 
waves of non-rapid eye movement 
[NREM] sleep). Scientists have 
been hesitant to attribute sleep 
to reptiles, amphibians, fish, and 
especially invertebrates, preferring 
the noncommittal term “rest” in 
the absence of electrophysiological 
signs resembling those of mammals 
and birds. Studies with Drosophila
melanogaster [11,12], however, 
demonstrated that flies, also, become 
less responsive, i.e., sleep, when they 
remain quiescent for a few minutes. 
Moreover, sleep pressure increases 
if flies are kept awake, their sleep 
patterns change with the life span, 
and they are sensitive to hypnotics and 
stimulants [13–15]. Finally, the fly brain 
undergoes changes in gene expression 
between sleep and wakefulness similar 
to those observed in mammals [16,17], 
and shows changes in brain electrical 
activity [18]. Similar criteria have now 
been provided for zebrafish [19–21], 
and there is evidence that even the 
worm C. elegans shows a sleep-like state 
at a certain stage of development [22]. 

It has been argued that the 
assumption that sleep is universal is 
based on poor evidence [7]. Figure 
1 summarizes some of the “difficult” 
cases. The bullfrog is often promoted as 
an example of an animal that does not 
sleep. There is, however, only one study 
on this topic, published in 1967 [23]. 
This report concluded that bullfrogs 
do not sleep because even during the 
resting phase they never failed to show 
a change in respiratory responses after 
painful stimuli (cutaneous shock). The 
same report acknowledged that arousal 
thresholds could not be measured 
during the cyclic phases with the 
lowest respiratory activity, nor could 
they be tested with other physiological 
stimuli, such as light or sound. Also, 

the underlying assumption in that study 
was that shocks delivered late at night 
(presumably in the middle of sleep) 
should elicit less respiratory response 
than those given early in the night 
(when sleep had just started); however, 
the opposite was found [23]. In fact, we 
now know that in rodents and humans 
the deepest sleep occurs early after 
sleep onset. At the very least, it seems 
that more experiments are needed 
before concluding that bullfrogs do not 
sleep.

Coral reef teleosts showing sleep 
swimming have similarly been used 
as evidence that not all animals sleep 
(Figure 1). Two types of reef fish have 
been studied in terms of sleep; one is 
immobile at night and less responsive 
to alerting stimuli (stationary sleep 
[24]), and another [25] retreats to the 
coral at night, where it continues to 
move its fins even when holding a fixed 
position (called “sleep swimming”; 
possibly to avoid hypoxia [25]). The 
researchers who studied these teleosts 
defined sleep swimming as a state 
“equivalent to sleep.” They assumed 
that sensory information must still 
be processed to a certain extent 
during sleep swimming, because each 
individual remains in its swimming 
zone during the night. Yet, the fish at 
night loses the ability to respond to 
predators [25], and mortality due to 
predators’ attacks is much higher at 
night, when the fish is sheltering in 
corals, than during the day, when it 
feeds in open waters [26]. Most losses 
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to predators occur in the first 1–2 h 
after sunset, i.e., at the beginning of 
the “rest” period. Although limited, 
the available evidence seems to suggest 
that sleep swimming is associated with 
hyporesponsivity.

In dolphins the very presence of 
sleep has been called into question 
because these marine mammals 
move continuously and their arousal 
thresholds have not been measured 
directly (Figure 2). Yet, dolphins are 
capable of engaging in slow waves with 
half of the brain at a time, a property 
called “unihemispheric sleep” [27–31]. 
Moreover, there is some limited 
evidence of decreased response to 

stimuli during stereotypical circular 
swimming, which is associated with 
unihemispheric sleep (Figure 2). The 
very fact that dolphins have developed 
the remarkable specialization that is 
unihemispheric sleep, rather than 
merely getting rid of sleep altogether, 
should count as evidence that sleep must 
serve some essential function and cannot 
be eliminated. Thus, there is no clear 
evidence of a species that does not sleep.

Corollary 2: Can Sleep Loss 
Occur without a Compensatory 
Rebound?
Are there animals in which sleep 
is not homeostatically regulated? 

Cockroaches, honeybees, and 
tilapia (Figure 1) are seen as species 
lacking this mechanism, because 
their response to sleep deprivation 
does not consistently include an 
increase in sleep time. However, it 
is well known that sleep has both 
a quantitative (duration) and a 
qualitative (intensity) dimension 
[32,33]. Sleep can be recovered by 
sleeping longer, more deeply (for 
instance in mammals NREM sleep 
becomes richer in slow waves), and/or 
in a more consolidated manner (sleep 
is less frequently interrupted by brief 
awakenings). Claims that in some 
animals sleep is not homeostatically 
regulated should be made only 
after several aspects of the response 
to sleep loss have been analyzed, 
including changes in sleep intensity 
and pattern. 

Evidence of apparent lack of sleep 
rebound comes from an early study of 
sleep deprivation using constant light 
in the pigeon [34], in which sleep was 
nearly eliminated in the birds for more 
than 10 d, with no subsequent increases 
in either total sleep time or slow-wave 
activity (SWA). Considered one of 
the best markers of sleep intensity, 
SWA is a measure of the number and 
amplitude of slow waves during NREM 
sleep [35]. However, in this study the 
overall amount of SWA was preserved 
across the entire sleep deprivation 
period in constant light, suggesting that 
the increasing sleep pressure may have 
forced sleep slow waves to leak into 
wakefulness.

There is evidence that zebrafish sleep 
and show sleep rebound after sleep is 
prevented by electrical or mechanical 
stimulation but not by light exposure, 
which can drastically reduce sleep for 
several days [19–21]. We interpret these 
findings to mean that light is a powerful 
arousing stimulus in zebrafish, not 
that sleep in this animal is dispensable. 
Even with light exposure, 15%–20% 
of baseline sleep remains, and this 
percentage increases if constant light 
is maintained for more than one week 
[21]. Moreover, it is unknown whether 
in zebrafish prolonged light exposure 
affects sleep intensity or causes long-
term detrimental effects. 

In the dolphin, not only the 
existence of sleep itself, but sleep 
homeostasis has been questioned 
also. The single published study on 
this issue, however, clearly shows that 

doi:10.1371/journal.pbio.0060216.g001

Figure 1. Animal Species in Which the Presence of Sleep and/or Its Homeostatic Regulation 
Have Been Called into Question 
See references [113–121]. SD, sleep deprivation.
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unihemispheric sleep is homeostatically 
regulated (Figure 2). 

By reviewing the data used to support 
the claim that sleep is not universal 
[7], we instead reach the opposite 
conclusion: sleep is present and strictly 
regulated in all animal species that 
have been carefully studied so far. 

Corollary 3: Can Sleep Loss Occur 
without Negative Consequences?

Harmful consequences of sleep 
deprivation have been described 
in many studies. Most dramatically, 
prolonged sleep deprivation leads 
to death. Rats kept awake using the 
disk-over-water method develop a 
peripheral syndrome characterized by 
increased metabolic rate and decreased 
body weight, which culminates in death 
after 2–4 wk [36]. Prolonged sleep 
deprivation is also fatal in flies [37], 
cockroaches [38], and humans with 
fatal familial insomnia, who die after 
developing a syndrome not unlike 
that seen in sleep-deprived rats [39]. 
Pigeons, however, appear capable of 
surviving prolonged sleep deprivation 
[40]. Prolonged sleep deprivation 
has not been studied in other species. 
Thus, it is unclear whether death, when 
it occurs, is due to loss of sleep per 
se or to other factors, such as forced 
arousals and the associated stress. 

Sleep intrusion. Whether or not 
sleep loss is lethal, sleep deprivation 
has two consequences that never fail to 
occur (but see Figure 2). The first one 
is intrusion of sleep into wakefulness. 
When wakefulness is enforced, sleep 
pressure increases and sleep cannot 
be avoided, irrespective of stimulation. 
During short-term (6–24 h) sleep 
deprivation experiments, some portion 
of baseline sleep (usually 5%–10%) 
is always maintained (e.g., flies [15], 
zebrafish [21], mice [41], rats [42], 
rabbits [43], hamsters [44], and 
dolphins [45]). Under a chronic “total” 
sleep deprivation regimen, rats still 
sleep at least 10% of the time, due to 
“microsleep” episodes [36]. Perhaps 
even more important, spectral analysis 
of the electroencephalogram (EEG) 
reveals that slower EEG activity (delta, 
< 4 Hz; or theta, 4–7 Hz) leaks into 
periods during which the animal may 
be moving around with eyes open, and 
which are therefore conventionally 
scored as wakefulness [42,46]. 

It is easier to keep humans awake. 
Especially motivated subjects can be 

kept awake for up to several days (for 
11 d in the famous case of Randy 
Gardner [47]) by keeping busy with 
pleasurable activities. (Although 
seriously sleep deprived humans have 
been reported to fall asleep even in 
the most dangerous situations [48].) 
People may seem superficially awake 
(moving and with eyes open) even 
though the EEG slows down or exhibits 
microsleeps [49,50]. Few studies so 
far have investigated the leakage 
of slower brain activity in the EEG 
of sleep deprived humans, though 
several studies show an increase in 
power in the theta frequency bands 

with prolonged wakefulness and sleep 
deprivation [50,51].

It is unknown whether the presence 
of slower activity in the “wake” EEG 
spectra of sleep-deprived animals or 
humans is due to “piecemeal” sleep, 
where some brain regions may be 
asleep whereas others are awake [52], 
to “salt and pepper” sleep-wake, in 
which within the same brain regions 
individual neurons may be awake 
(depolarized) and others may be 
oscillating between up- and down-
states (asleep, [53]), or to abnormal 
cellular activity that is neither wake 
or sleep. Whatever the underlying 

doi:10.1371/journal.pbio.0060216.g002

Figure 2. Sleep in Dolphins: A Difficult Case?
Dolphins and a few other species have developed unihemispheric (one-sided) sleep, a remarkable 
specialization strongly suggesting that sleep must have some essential function and cannot be 
eliminated [123]. Yet, the very presence of sleep in dolphins has recently been questioned based 
on four lines of evidence. (1) It has been argued that unihemispheric sleep is not really sleep 
because dolphins move and, more crucially, because there is no evidence that the hemisphere 
with slow waves is less capable of responding to the environment [7]. In fact, the presence of slow 
waves in one hemisphere is associated with unilateral slow waves in the thalamus, and unilateral 
decrease in brain metabolism, including in the ipsilateral locus coeruleus, an arousal-promoting 
system [124]. In other words, electrophysiological and metabolic processes that always occur 
bilaterally in the brain of other mammals can be engaged unilaterally in the brain of a dolphin. 
It therefore seems at least plausible that half of the dolphin brain can be unresponsive while the 
other half may be awake. Indeed, there are a few brief reports showing that both bottle-nosed 
and white-sided dolphins show reduced or no response to stimuli when performing stereotypical 
circular swimming, which is associated with unihemispheric sleep [122,125]. 
(2) Another argument was raised by a report describing continuous activity in newborn dolphins 
(and whales) and their mothers for the first postpartum month [126]. However, based on 2 
additional recent studies that assessed eye closure under water [127,128], it seems likely that 
young cetaceans engage in unihemispheric sleep while swimming, and do so from birth for many 
hours a day. It has been argued [7] that even if present, this unihemispheric sleep could not be 
restorative, because it is interrupted every 30–60 s by breathing. The basis for the latter assumption 
remains unclear. Rats sleep 12–14 h per day and their sleep cycle lasts approximately 10–20 min. 
When forced to a schedule of 30-s stimulation on/90-s stimulation off, rats learn quickly to sleep in 
the 90-s off period, so that their total daily time in NREM sleep does not change (and the intensity 
increases [61]). When tested in a spatial learning task, these animals, which are not capable of 
unihemispheric sleep, still perform at 70%–80% of baseline levels. Until (if ever) combined EEG-
performance studies will be performed in young cetaceans, it seems at the very least premature to 
imply that their sleep must necessarily be poor and not restorative. Even so, the issue is not how 
well they sleep, but whether they sleep.
(3) Regarding sleep homeostasis, there is only one publication [45] in which EEG recordings 
were used in dolphins to measure the response to sleep deprivation. Of note, the study used 
different lengths of sleep deprivation (35–150 h) and of recovery (9–24 h), slow waves could not 
be totally prevented during the sleep deprivation, recovery ended at different time of day, data 
were averaged for the entire recovery period, and only sleep duration (not sleep intensity) was 
measured. Nevertheless, it was found that (i) during sleep deprivation the amount of stimulation 
required to prevent slow waves increased progressively; (ii) in all cases (n = 6) bilateral sleep 
deprivation increased sleep time during recovery; (iii) in all cases (n = 9) unihemispheric sleep 
deprivation increased sleep duration in the affected hemisphere. Though the results of this seminal 
study have been characterized as “very variable” [7], it is hard to deny the presence of a clear-cut 
sleep rebound. 
(4) A final issue was raised by a recent study in two highly trained dolphins, which showed that 
they could maintain continuous vigilance for 5 d [125]. In fact, during the stimulation period the 
two animals displayed resting behavior at night (floating or very slow stereotyped swimming), and 
response times were slower at night than during the day, suggesting that at least some rest was 
obtained (most likely unihemispheric sleep, as suggested by the authors). Moreover, one of the two 
dolphins the last night “ignored all target stimuli for 4 hours and appeared to be asleep” [125]. 
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cellular events, it seems impossible 
to completely deprive an animal of 
sleep for more than 24 h [54]. Rather, 
what seems to occur is a kind of 
“dormiveglia” (sleepwake), a mixed 
state that is clearly dysfunctional.

Cognitive impairment. The
second documented consequence 
of sleep deprivation is performance 
deterioration, especially cognitive 
impairment. Intriguingly, there is 
great inter-individual variability in the 
susceptibility of humans to the effects 
of sleep deprivation, and subjects 
whose performance is little impaired 
by one task may show great impairment 
in another task [55,56]. Partial sleep 
restriction also impairs cognitive 
performance, although subjects may 
not realize that they are impaired 
[57,58]. Cognitive impairment is easier 
to study in humans than in animals, but 
there is now evidence that both acute 
sleep loss and sleep restriction affect 
cognitive function in flies [59], birds 
[60], and rodents (e.g., [61]).

Sleepy or tired? An important 
unsolved question is whether the 
impairment, cognitive or otherwise, 
that follows sleep deprivation is merely 
the consequence of an increased drive 
for sleep (“sleepiness”) or whether 
brain cells need sleep because they are 
actually “tired.” Pure sleepiness can be 
conceptualized as the effect of central 
sleep-promoting mechanisms telling 
the brain it is time to sleep, whether 
or not brain cells need to do so. For 
instance, when we are jet-lagged, the 
circadian system may at times dampen 
the activity of arousal systems and 
boost that of sleep-promoting systems 
in brainstem, hypothalamus, and basal 
forebrain [62], even though we may 
not have been awake for long and 
presumably do not need extra sleep. 
Attention lapses or unresponsiveness 
in such circumstances could be due 
to the activation of sleep-promoting 
mechanisms, not to the brain being 
actually “tired.” Similar considerations 
apply to the increased sleepiness 
that follows a heavy meal, the use of 
sedatives, a boring environment, and 
so on.

Conversely, it may be that brain 
cells actually do get tired as a function 
of waking activities, whether or not 
the arousal systems are pushing the 
organism to stay awake. This may 
be the case, for instance, when we 
try to prolong wakefulness using 

amphetamines or other arousal-
promoting drugs: though we are alert, 
certain aspects of performance seem 
to deteriorate [63]. Pure tiredness 
can be conceptualized as the inability 
of brain cells to continue functioning 
in their normal waking mode, 
despite the central wake-promoting 
mechanisms telling the brain it should 
be fully alert. PET studies show that 
glucose metabolism decreases more 
in prefrontal and parietal association 
areas involved in attention, judgment, 
and associative functions than in 
primary sensory and motor areas 
[64–67]. These results are more 
consistent with some parts of the brain 
being disproportionately “tired” than 
with the entire brain being “sleepy.” 

Altogether, then, while we still 
do not understand whether sleep 
deprivation is followed by sleep 
intrusions and cognitive impairment 
because we become sleepy, tired, or 
both, the evidence so far indicates that, 
contrary to the predictions of the null 
hypothesis, lack of sleep has serious 
consequences, especially for the brain.

Sleep Function: Beyond the Null 
Hypothesis
The three corollaries of the null 
hypothesis do not seem to square well 
with the available evidence: there is 
no convincing case of a species that 
does not sleep, no clear instance of an 
animal that forgoes sleep without some 
compensatory mechanism, and no 
indication that one can truly go without 
sleep without paying a high price. What 
many concluded long ago still seems to 
hold: the case is strong for sleep serving 
one or more essential functions [9,10]. 
But which ones? The points below 
represent judgment calls that may 
be helpful in provoking discussions, 
guiding hypotheses and, above all, 
inspiring experimental tests.

A universal function. It may still 
be wise to search for a function or 
functions that apply to all animals. It is 
unknown whether a proto-sleep state 
emerged early in evolution, perhaps 
out of the rest–activity cycle, or whether 
sleep emerged multiple times in the 
course of evolution. In either case, 
the simplest hypothesis (after the null 
hypothesis) is that sleep evolved to 
serve the same function in all species.

A core function. There is no doubt 
that sleep, by changing so many aspects 
of physiology and behavior, affects the 

vast majority of body functions, from 
immunity to hormonal regulation 
to metabolism to thermoregulation. 
However, the simplest hypothesis (after 
the null hypothesis) is that there may 
be a single core function that requires 
sleep, and adventitious functions that 
take advantage of sleep. 

A function transcending specific 
phenotypes and mechanisms. Sleep
comes in many forms. In the best 
known example, brain activity in NREM 
sleep and REM sleep is remarkably 
different: the EEG of NREM sleep 
is distinctive, with slow waves and 
spindles, and the EEG of REM is 
similar to that of wakefulness [68]. 
Brain metabolism is low in NREM 
sleep but high in REM sleep [69]. 
Thermoregulation is preserved in 
NREM sleep but not in REM sleep 
[70]. It is therefore assumed that these 
two phases of sleep perform quite 
different functions. It is highly unlikely 
that fly brains can produce slow waves 
or spindles [18], and they do not seem 
to have the equivalent of REM sleep. 
The mechanisms of sleep can also vary 
considerably: the hypocretin–orexin 
system has an arousing action in 
mammals but may have a hypnogenic 
effect in zebrafish [21]. It may be, of 
course, that each variation in sleep 
phenotype or mechanism implies a 
different function (and to some extent 
functional differences must exist), but 
it is perhaps more parsimonious to 
assume that there may be many ways 
to achieve the same goal. After all, 
in NREM as in REM stages, in fruit 
flies as in zebrafish as in humans, the 
organism (or parts of it) is quiescent 
and unresponsive—that is, asleep. 

A neural function. Although the 
entire body benefits from sleep [71], 
the most immediate, unavoidable 
effect of sleep deprivation is cognitive 
impairment. The brain suffers most 
from sleep deprivation. It is less clear 
that the rest of the body suffers as 
rapidly, significantly, or inevitably 
from lack of sleep. Although we talk 
about a muscle that is active or at rest, 
muscle rest can be achieved during 
quiet wakefulness, and does not seem 
to require sleep. However, few studies 
have compared directly the restorative 
value of quiet wakefulness and sleep 
for either the brain or any other organ 
[48,72]. This is a research approach 
that clearly deserves more emphasis in 
the future. 
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A cellular function. If sleep has a 
core function involving the brain, such 
a function might be identifiable at the 
cellular level and there would be a price 
for brain cells to remain indefinitely 
awake. Indeed, the search for the 
function of sleep has often focused 
on identifying neuronal resources 
depleted during wakefulness and 
restored during sleep or, alternatively, 
neurotoxic substances that accumulate 
during wakefulness and dissipate 
during sleep. In mice, sleep may favor 
the replenishment of glycogen in glial 
stores [73], but this may be the case 
in only a few brain regions, and not 
in all mouse strains [74,75]. It has 
also been proposed that sleep may 
allow the removal of toxic free radicals 
accumulated in the brain during 
wakefulness [76,77]. However, studies 
in long-term sleep deprived rats found 
evidence for oxidative stress, but not 
oxidative damage (e.g., [78,79]). This 
result suggests that the cellular stress 
response induced during wakefulness 
may be sufficient to avoid long-
term negative effects [80,81]. Other 
possibilities that are worth exploring are 
inspired by the recent systematic data 
on changes in brain gene expression 
that occur between sleep and 
wakefulness or after sleep deprivation 
[16,17,80,82–89]. In all species studied 
(flies, mice, rats, hamsters, and 
sparrows), wakefulness leads to the 
up-regulation of three categories of 
transcripts—those involved in energy 
metabolism, in the response to cellular 
stress, and in activity-dependent 
processes of synaptic potentiation. By 
contrast, transcripts expressed at higher 
levels during sleep are involved in 
synaptic depression and depotentiation, 
in the synthesis/maintenance of 
membranes, and in lipid metabolism 
[80,87]. One way to make sense of these 
apparently disparate findings is in terms 
of plastic processes. For example, we 
have suggested that during wakefulness, 
when animals interact with the 
environment and need to learn, there 
is a net increase in synaptic strength 
in many brain areas, in which case 
sleep would be needed to renormalize 
such changes [90,91]. A net increase 
of synaptic strength at the end of a 
waking day would result in higher 
energy consumption [92,93], larger 
synapses that take up precious space 
[94], and saturation of the capacity 
to learn. Also, a net strengthening 

of synapses likely represents a major 
source of cellular stress [80–82], due 
to the need to synthesize and deliver 
cellular constituents ranging from 
mitochondria to synaptic vesicles to 
various proteins and lipids. In this 
view, then, sleep would be necessary to 
renormalize synapses to a baseline level 
that is sustainable and ensures cellular 
homeostasis. 

A function that cannot be provided 
by quiet wakefulness and that benefits 
from environmental disconnection. 
If wakefulness were as good as sleep 
in fulfilling a fundamental biological 
function (or even nearly as good), 
is it likely that sleep would be so 
ubiquitous? Why would an animal 
choose to spend long periods of 
time not just immobile, but above all 
disconnected from the environment? 
It would seem that, if sleep has a core 
function, and if this function is for 
the brain, it should be one the brain 
cannot fulfill during wakefulness, 
and one that benefits from being 
performed off-line. Among several 
options, those related to plasticity and 
memory are especially intriguing, not 
least since during sleep, despite the 
functional disconnection from the 
environment, most neurons remain 
spontaneously active at levels similar to 
wakefulness [95]. 

Off-line activity may be necessary 
to stimulate synapses that remain 
underused during the waking day 
[96–98], so they can be ready when 
their turn comes. It may also be 
an excellent way of maintaining 
old memories by keeping them 
“exercised,” or of weakening 
nonadaptive memory traces while 
strengthening the adaptive ones 
[99]. A related idea is that an off-
line activation of neural circuits 
may be especially important during 
development [100], perhaps to 
rehearse innate behavioral patterns 
[101]. And perhaps sleep may even 
favor the formation of new synaptic 
contacts to refresh the repertoire of 
circuits available for the selection and 
acquisition of new memories [102]. 

Alternatively, sleep may be a good 
time for consolidating and integrating 
new memories without interference 
from ongoing activities, and indeed 
human studies have provided 
evidence for sleep-dependent memory 
consolidation, at least in some tasks 
[103,104]. Consolidation may happen, 

for instance, by further strengthening 
synapses already potentiated during 
wakefulness [103,105,106]. The 
observation that neural circuits 
activated during learning are 
“reactivated” during sleep is consistent 
with this possibility (e.g., [107–111]). 
Another possibility is that signal-to-
noise ratios may increase through the 
generalized downscaling of synapses, 
as synapses mediating firing patterns 
predictive of postsynaptic activation 
would “survive” better than random 
ones [90,91,112]. This scenario would 
prevent runaway synaptic potentiation 
and the saturation of the ability to 
learn. Moreover, it would dovetail 
nicely with the cellular need for 
synaptic homeostasis: renormalizing 
synapses during sleep would counteract 
the cellular stress brought about 
by synaptic potentiation during 
wakefulness.

Conclusion

While there is still no consensus on 
why animals need to sleep, it would 
seem that searching for a core function 
of sleep, particularly at the cellular 
level, remains a worthwhile exercise. 
Especially if, as argued here, sleep is 
universal, tightly regulated, and cannot 
be eliminated without deleterious 
consequences. In the end, the burden 
of proof rests with those who are 
attempting not only to reject the null 
hypothesis, but to gather positive 
evidence for the elusive phoenix of 
sleep. �
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