
Communicating Research to the General Public 
The WISL Award for Communicating PhD Research to the Public launched in 2010, and since then over 
100 Ph.D. degree recipients have successfully included a chapter in their Ph.D. thesis communicating their 
research to non-specialists. The goal is to explain the candidate’s scholarly research and its significance—as 
well as their excitement for and journey through their area of study—to a wider audience that includes family 
members, friends, civic groups, newspaper reporters, program officers at appropriate funding agencies, state 
legislators, and members of the U.S. Congress. 

 
WISL encourages the inclusion of such chapters in all Ph.D. theses everywhere, through the cooperation 
of PhD candidates, their mentors, and departments. WISL offers awards of $250 for UW-Madison Ph.D. 
candidates in science and engineering. Candidates from other institutions may participate, but are not eligible 
for the cash award. WISL strongly encourages other institutions to launch similar programs. 

 
 
 
 
 
 
 
 
 

 
The dual mission of the Wisconsin Initiative for Science Literacy is to promote  
literacy in science, mathematics and technology among the general public and  
to attract future generations to careers in research, teaching and public service. 

Contact: Prof. Bassam Z. Shakhashiri 

UW-Madison Department of Chemistry 

bassam@chem.wisc.edu  

www.scifun.org 

mailto:bassam@chem.wisc.edu
http://www.scifun.org/


Machine Learning Based Protein Engineering for Microbial Chemical 

Production 

 

By  

Jonathan C. Greenhalgh 

A dissertation submitted in partial fulfillment of the requirements for the degree of: 

 

Doctor of Philosophy 

(Chemical and Biological Engineering) 

 

UNIVERSITY OF WISCONSIN-MADISON 

2022 

 

 

Date of Final Oral Examination: 04/08/2022 

This dissertation is approved by the following members of the Final Oral Committee: 

Philip A. Romero, Assistant Professor, Biochemistry, Chemical and Biological 

Engineering 

 Brian F. Pfleger, Professor, Chemical and Biological Engineering 

 Eric V. Shusta, Professor, Chemical and Biological Engineering 

 Andrew R. Buller, Assistant Professor, Chemistry 

Srivatsan Raman, Assistant Professor, Biochemistry, Chemical and Biological 

Engineering, Bacteriology



  

 

 
 

166 

 

 

 

 

Chapter 6 

Application of machine learning-based protein engineering to make 

an improved acyl-ACP reductase enzyme 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Author: Jonathan Greenhalgh 
 
 
I believe science can be applied in ways that make a difference in people’s lives. But that 

can only happen if science is communicated in a way that people can understand the 

findings and see ways to apply them. I wrote this chapter to present the results of my 

scientific work in a more accessible manner so that scientists and non-scientists alike can 

understand the findings and the process. In some respects, that makes this the most 

important chapter of my dissertation. I am grateful to the Wisconsin Initiative for Science 

Literacy (WISL) at UW-Madison for encouraging and enabling communication of science 

to broader audiences, and I am especially grateful to Professor Bassam Shakhashiri, 

Elizabeth Reynolds and Cayce Osborne for their support and feedback as I’ve worked on 

this chapter.   
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6.1 Introduction 

6.1.1 Background and motivation 

Ever since I took biochemistry class in college, I have found the chemistry of 

proteins fascinating. As a chemical engineering student, I was really interested in how 

proteins could be used to make chemicals in cells. I joined the lab of Phil Romero who 

studies protein engineering and machine learning, and collaborated very closely with 

Brian Pfleger, who studies ways to engineer microbial organisms (like bacteria and yeast) 

to make valuable chemicals. Combining these two disciplines led to the project that I 

worked on for most of my graduate studies, which is engineering an enzyme that can be 

used to make the fatty alcohol molecules that are commonly found in lotions and 

detergents. Protein engineering is a really exciting field of study and combining protein 

engineering and machine learning (basically using computers to help engineer proteins 

better), is even more exciting. In this chapter I’ll explain in as simple terms as I can what 

protein engineering is, why we used it, and how machine learning helps the process using 

a specific example from my research1. 

 

6.1.2 Proteins and enzymes 

To understand protein engineering, first I must explain a little bit about proteins. 

Proteins are molecules that are made up of smaller pieces called amino acids. There are 

twenty common amino acids, each with unique properties. This set of amino acids is like 

an alphabet; the amino acid alphabet contains twenty letters (A, C, D, E, F, G, H, I, K, L, 

M, N, P, Q, R, S, T, V, W, Y), where each letter corresponds to a specific amino acid (A 

for Alanine, C for Cysteine etc., except it's not always the first letter of the amino acids 
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name). Each amino acid typically only sticks to two other amino acids, so when combined 

they form long chains that are kind of like words when we write out their one letter 

abbreviations (things like “WERNLPLDL…”). The order of amino acids in a protein also 

determines what the protein looks like, and importantly what it does, just like the order of 

letters in a word determines the word’s meaning. Enzymes are a class of proteins that 

carry out chemical reactions in cells to convert one molecule to another.  

 

6.1.3 How protein engineering works 

Sometimes, for whatever reason, it’s desirable to change what a protein or enzyme 

does, or make it do a specific task better. Making changes in the protein sequence will 

usually result in changes to the protein itself (though not always good ones). But how do 

we change the protein sequence? It turns out there are a lot of ways, but they all involve 

making changes to DNA in a cell. DNA also has an alphabet (only four letters, A, C, G, 

and T), but the letters in the DNA alphabet and the letters in the amino acid alphabet are 

quite different (DNA letters are called nucleotides or bases). DNA contains the 

instructions for making proteins in cells, and cells make proteins by translating messages 

from the language of DNA to the language of proteins. In this way, DNA is almost like a 

coding language, and proteins are kind of like a software application.  

Humans have come a long way in terms of understanding DNA, to the point where 

editing DNA code is becoming much easier to do. Any edits made to instructions for 

making a protein will result in a modified protein (sometimes called a mutant or variant). 

There are lots of ways to approach editing the DNA; randomly changing one DNA base 

at a time, systematically changing very specific bases to target specific amino acids in a 
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protein, or combining or shuffling large fragments of DNA (this is called recombination)2–

4. All these methods will affect the protein sequence, and in turn the protein function.  

 

Figure 6.1: DNA determines a protein’s sequence, which determines what the protein does or 
makes. DNA is transcribed to a similar molecule, RNA, which is then translated to make the 
proteins. Then a protein will fold into a 3D structure, which is uniquely suited for carrying out its 
designated function (for enzymes this would be carrying out a chemical reaction). 

 

Once a strategy has been selected for editing the protein sequence (via editing the 

DNA), there are multiple ways to approach engineering. The Nobel Prize in 2018 was 

awarded to Frances Arnold for developing an approach called directed evolution. Directed 

evolution is a way to engineer proteins by copying how evolution in nature works5. Large 

sets of altered proteins are tested for a specific trait (for example, heat tolerance, ability 

to use a specific chemical as a starting material, or reaction speed) and the best one is 

used as the starting template for the next round. This process is repeated over and over 

and can result in new protein sequences with massive improvements. Another strategy is 

to use information about a protein’s shape, or structure, and pick specific amino acids to 

change to accomplish a specific goal. This strategy is called rational design. Both directed 

evolution and rational design can be used to alter similar properties, the choice of which 

method to use really depends on how much is known about the structure (more 
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knowledge favors rational design), or whether it is easy to test large numbers of proteins 

quickly (the rough number of sequences that can be tested is called throughput; high 

throughput favors directed evolution).  

Though rational design and directed evolution are the main ways to engineer 

proteins, they have drawbacks too. Rational design requires accurate models of protein 

structures, which are not always available. Directed evolution requires being able to test 

a huge number of proteins, tens of thousands to millions (usually all at once, though some 

very fast technologies enable individual testing), so it is limited by the capacity and speed 

of the test. However, new methods are emerging to use machine learning to accelerate 

protein engineering. Machine learning can overcome bottlenecks or shortcomings of 

directed evolution and rational design to help design better protein sequences in a more 

efficient manner6.  

 

6.1.4 Protein engineering for chemical production 

Protein engineering has a lot of uses, ranging from therapeutic antibodies, which 

can be used to treat viral infections, to improving the enzymes used in liquid laundry 

detergent. In my studies, I am using protein engineering to increase chemical production 

of fatty alcohols (a kind of chemical commonly used in detergents, cosmetics and 

flavorings)7 in cells. Making a chemical product in cells is similar to navigating from a 

location to a destination on a map. The location is the starting material (usually for cells 

this would be a sugar like glucose) and the destination is the product (in this case, fatty 

alcohols). Each step in the path is carried out by an enzyme. The enzyme controls how 

fast and how well the reaction occurs; this is kind of like controlling what kind of road the 
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path is and enforcing a speed limit. Sometimes the most direct route to the product goes 

through a slow enzyme, and so protein engineering can be used to speed that step up. 

 

Figure 6.2: The roadmap to fatty alcohols in cells. Glycolysis is the process that breaks down 
sugars, fatty acid elongation is how fatty acyl-ACPs of different sizes get made. There are multiple 
possible routes to get from sugars to fatty alcohols. The direct route from acyl-ACPs (shown as a 
narrow path) is currently less used, but potentially more efficient. More commonly, the longer path 
through fatty acids and acyl-CoAs is used, which requires more energy. 

 

6.1.5 The acyl-CoA route 

There are multiple routes to fatty alcohols on our map. The most used routes go 

through a specific kind of intermediate called acyl-CoA (ay-seel-co-ay)7–9. Acyl-CoAs are 
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a lot like fatty alcohols in that they come in a range of lengths. They consist of two parts, 

an acyl chain, and a large molecule called coenzyme A or CoA, (which is a very important 

molecule elsewhere in metabolism too) linked together. A type of enzyme called an acyl-

CoA reductase (or ACR) basically breaks the link between the acyl chain and the CoA. 

When the link breaks, the acyl chain gets converted first to a fatty aldehyde, and then the 

ACR transforms the fatty aldehyde to a fatty alcohol (in a reaction called a reduction)10.  

 

6.1.6 The acyl-ACP route 

Acyl-CoA reductases are very good at converting acyl-CoAs to fatty alcohols, but 

acyl-CoAs aren’t necessarily the most direct route to the destination. There is another 

kind of intermediate called acyl-acyl-carrier proteins (acyl-ACPs) that can be converted 

to fatty alcohols, and that could potentially be more efficient. Acyl-ACPs are like acyl-

CoAs, the acyl chain is just attached to a small protein (ACP) instead of CoA. Because in 

many cases, the cells need to make acyl-ACPs to get to CoAs anyway, having an ACR 

that can make fatty alcohols from acyl-ACPs could save the cell energy and resources 

and enable better results. Some ACRs can also convert acyl-ACPs to fatty alcohols, but 

they are typically very bad at it11, so we decided to engineer an ACR to be able to do it 

better. The ACR called MA-ACR from a species of bacteria called Marinobacter Aqueolei 

showed a lot of promise in scientific work done by others7–9, so we decided to use it as 

the starting point for our engineering effort. 
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6.2 Engineering ACRs to Acyl-ACP Reductases: design, build, test, learn 

6.2.1 Designing the library 

To engineer MA-ACR, we started by designing a sequence library. Just like a 

physical library is a place where documents or books are stored, a protein library is a 

place where a large set of potential protein sequences are gathered. Each protein 

sequence in the library is like an individual book or document. This metaphor can extend 

even further, chapters in the book could be like important motifs or modules in the protein 

sequence and the words could be the individual amino acids. But the library is where we 

figure out what sequences (or books) are available. 

 

Figure 6.3: Large groups of protein sequences are often referred to as “libraries” in the scientific 
literature. In this analogy, the library refers to the place where all the sequences are stored, and 
each protein sequence can be thought of as an individual document. Though literature examples 
typically don’t extend the library metaphor further, we can think of the parts that make up the 
protein (modules or motifs), as chapters and the amino acids as words. 
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The way we chose to design our ACR library was using a trick called 

recombination4. The idea of recombination is that proteins are modular and have modules 

or blocks of amino acids that can be interchanged for other similar blocks. Because 

different kinds of organisms often have slightly different versions of the same proteins, 

these modules can be swapped out to generate new enzymes that work better, and 

because evolution tends to generate proteins that actually work, it is more likely that 

changing the protein sequence in this way will result in a functional protein than by just 

making random changes (a technique that is actually very commonly used). First, since 

we already knew that each ACR had two parts (or domains)10, we selected three ACR 

sequences from different bacteria (MA-ACR, MB-ACR and MT-ACR), and made all nine 

combinations of the pieces. The results were surprising. First, we found that MB-ACR (BB 

in Figure 6.4) actually worked better than MA-ACR (AA in Figure 6.4). Second, and more 

surprisingly, when we made an enzyme that was half MA-ACR and half MB-ACR (AB in 

Figure 6.4), it worked even better than both of them. It was really exciting and encouraging 

to have a positive result so early.  
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Figure 6.4: Recombining parts from natural enzymes resulted in even better enzymes (compare 
AB to AA and BB). Note, AA is MA-ACR and BB is MB-ACR. 

 

Next, we started to work on studying the half of the enzyme that carries out the first 

reaction step (the conversion of acyl-ACP to a fatty aldehyde). To do this, we kept the 

other half of the enzyme constant and chose the three enzymes that had it as “parents” 

for recombination (I’ll refer to the versions we used as Parent A, B and T), and then used 

a mathematical algorithm to help us identify a set of eight blocks from each sequence that 

line up with the other sequences12. This would normally give 38 = 6,561 possible 

combinations of blocks, but in this case because two blocks were exactly the same there 

are 4,374. 
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Figure 6.5: The design-build-test-learn cycle. We designed a test set to try as many combinations 
of the three parent enzymes as possible. Then we tested the sequences experimentally to figure 
out how much fatty alcohol each one made. After that we used two different kinds of machine 
learning models to help design sequences to study in future iterations of the cycle. Finally, we 
assembled the sequences using pieces of DNA and repeated the process.  

 

Normally, with this many potential combinations, we would have to test all the sequences, 

either individually (which would be prohibitive with our detection methods), or all at once 

(by linking alcohol production to cell survival or growth). However, because we didn’t have 

reasonable ways to use either of these approaches, we chose to use machine learning 

to help us learn about these protein sequences more efficiently and bypass the bottleneck 

in the number of sequences that we could test experimentally.  

 

6.2.2 Machine learning compliments protein engineering   

Just like mapping apps can use data and algorithms to help us find directions, 

similar strategies can be applied to protein engineering. Machine learning is the term for 

computer algorithms that learn from data. Examples of machine learning in everyday life 
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are abundant; one common and important example is the spam filter that detects junk 

emails. Machine learning has the potential to drastically improve efforts to engineer 

proteins and biological pathways. Biological pathways are complex, and the number of 

mathematical variables involved in engineering them can be staggering. But machine 

learning models can deal with all those variables and can help us identify the most 

important ones. Also, just like machine learning tools can be used in advertisements to 

recommend specific products for specific people, machine learning can be used to 

recommend specific “books” or sequences in our library of ACRs that could be good for 

making fatty alcohols. This means that we don’t have to test all four thousand sequences 

to find the best enzymes, instead we can test a smaller set and use what we learn to 

improve our models and find better enzymes.  

 

6.2.3 Building the sequences 

From our set of 4,374 sequences, I identified twenty sequences that as a set, gave 

me the most information about all the potential variables (using statistics). Then, I started 

working on building them. This is kind of like building Legos, just instead of plastic blocks, 

we use tiny fragments of DNA and a special enzyme (called ligase) that sticks them 

together13. I found this process fascinating. The idea that I could get on my computer, 

design a large circular piece of DNA (called a plasmid), and then use that DNA to build 

something else was very exciting. Of course, it is not quite that easy, and I had my share 

of troubles getting it to work, but at the end of the day I figured things out and was able to 

successfully build all twenty sequences I needed for initial testing. I would use the same 
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method again later once we started learning more about which sequences were good at 

making fatty alcohols. 

 

6.2.4 Testing  

To test our ACR sequences, we would put the DNA sequences into E. coli and 

grow the E. coli for about 18 hours. In order to signal the cells to make more ACR protein 

(i.e. expressing ACR), we would add a chemical called IPTG, which signals the cells to 

start making the protein, and to make sure the cells had enough resources to make extra 

fatty alcohols we added glycerol (which serves as a source of carbon, similar to the sugar 

glucose). After turning on protein production, the cells would naturally start making fatty 

alcohols as well. We then used an instrument called a Gas Chromatograph to measure 

the amount of fatty alcohol produced by the cells (the amount or concentration of fatty 

alcohols in cells is also called the titer).  

 

6.2.5 Learning 

After figuring out how much fatty alcohol each of our ACRs made, we then started 

using machine learning models to learn as much as we could about what sequences 

worked best. The machine learning models take the protein’s amino acid sequences as 

an input and try to find a mathematical relationship between the sequence and the fatty 

alcohol levels. This process is called model training. Once a model is trained, it can also 

be used to make predictions about other sequences, even sequences that have not been 

tested yet. 
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I used two kinds of models. First, I used a classifier to learn the difference between 

ACRs that worked and ACRs that didn’t. The classifier input is the protein sequences I 

tested and whether they were active in my experiments, and it produces a binary output 

or prediction (active/inactive) for all the sequences that I hadn’t tested yet. The classifier 

is kind of similar to how a spam filter works (predicting spam/not spam based on content 

of an email). Using the classifier helped me pre-filter out bad sequences so that I wouldn’t 

have to worry about them for the next modeling step.  

The next step was using regression models. Unlike the classifier, which outputs 

categories, regression has a continuous output, meaning that it outputs numerical values. 

For example, a classifier can be used to classify based on meteorological data, whether 

it will be hot or cold, but a regression model can be used to predict the temperature. 

Regression allowed me to make predictions about which ACR sequences would work, 

and how well they would work compared to others. Additionally, the regression model that 

I used also outputs estimates of uncertainty14. This was very useful, because it allowed 

me to use the model to suggest (or design) new sequences to build that would be both 

rich in information and likely to work well at the same time.  
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Figure 6.6: Schematic depicting how different kinds of machine learning models work (regression and classification). 
The top half shows an example of how each kind of model could be used to predict different weather-related 
properties. The bottom example is an example of how the models could be used to predict whether an enzyme works 
(i.e., whether it is active) and how much fatty alcohol it can make (i.e. it’s titer).  

Figure 6.6: Schematic depicting how different kinds of machine learning models work 
(regression and classification). The top half shows an example of how each kind of model could 
be used to predict different weather-related properties. The bottom example is an example of 
how the models could be used to predict whether an enzyme works (i.e., whether it is active) 
and how much fatty alcohol it can make (i.e. it’s titer).  
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6.2.6 Completing the cycle 

Searching for the best enzyme is kind of like hiking to the top of a mountain. From 

the base of the mountain, the top is not always visible, so we can make an estimate (like 

training a model and making a prediction) to guess where it might be. As we climb higher 

and higher, we test out our theory and gain more information. This helps us get a clearer 

picture of where the summit is (like updating a model). Occasionally this journey leads to 

the top of false summits or secondary peaks, but if we keep updating our objective as we 

learn from the landscape, we can make it to the top.  

Finding the best ACR sequence was very similar, the first batch of sequences that 

were suggested by the machine learning models didn’t work very well (we had no idea 

where the summit was). But that was ok. We never intended to stop after the first attempt, 

and when it comes to machine learning, any data we could get would be useful for future 

rounds. After the sequences in the first round failed, we just updated the machine learning 

models and tried again. We repeated the process of building and testing sequences, 

training machine learning models on the data, and using the models to design new 

sequences, over and over until we finally achieved ACR sequences that worked much 

better than the original enzymes we started with. All in all, we tested about 96 ACR 

sequences over ten turns (or rounds) of this iterative design-build-test-learn cycle.  

Each full cycle took about two weeks: one week to build the sequences and verify 

that they were correct, and another week to grow the cells containing the sequences and 

test them. Updating the machine learning models was the fastest part of the workflow. It 

only took a few minutes to update the models and make new predictions. Over time, as 
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there was more and more data to train the models, the models took slightly longer to train, 

but on the flipside, they got much more accurate too.   

 

 

Figure 6.7: The search for the optimal enzyme can be thought of as a hike. By gradually working 
your way uphill, you can make your way to the summit. Similarly, by gradually searching for better 
and better enzymes you can progress towards the best one. The left side of this figure shows a 
visualization of the sequence landscape in 3D, where the “elevation” is like the predicted titer from 
the models. The stars show key points along the way (basically top sequence in every round 
where there was an improvement). Further distances between sequences suggest that the 
sequences are more different from each other. The figure on the right shows the amounts of fatty 
alcohols in each round (each round is shown as a different color). P is the parents (AA, AB, and 
AT) and TS is the initial test set of twenty ACRs. The best sequence was identified in round 9. 
The black bars in this figure show the average titer for all the sequences in that round.  

 

6.3 Conclusions 

Our best ACR sequence (which we called ATR-83) made about twice as much 

fatty alcohol as the best natural enzyme that we studied. Experiments in test tubes 

validated these results and verified that they were due to the enzyme being a better 

catalyst, rather than simply being easier for the cell to make. The next question we wanted 

to answer was why it worked better. Again, we turned to machine learning models. This 

time instead of making predictions about sequences we hadn’t tested yet; we used the 

models to try to understand as much of the sequence as we could. The outputs of the 
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models suggested that a few very specific blocks were very important. Some of these 

were expected to play a big role (the blocks that actually carry out the reaction), but some 

of the important blocks were surprising. As we studied the protein sequence further, we 

found that there were a large number of positively charged amino acid residues near the 

site where we believed the acyl-ACP should bind. Interestingly, ACP has a lot of 

negatively charged amino acids, so the two proteins can stick together similar to a pair of 

oppositely charged magnets15. ATR-83, our best sequence, had even more positively 

charged amino acids than the natural proteins.  

 

Figure 6.8: Summary of Improvements to ACRs. Testing out new natural enzymes helped us find 
a better ACR for converting acyl-ACPs to alcohols. Recombining that sequence with our starting 
sequence resulted in another boost in activity and using our machine learning-guided approach 
we were able to design a sequence (ATR-83) that could make even more fatty alcohols. 
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In summary, we were able to over double the amount (or titer) of fatty alcohols that 

we produced in cells by using our designed ACR sequence, ATR-83. This result shows 

that machine learning can be used to help engineer proteins without needing to test 

thousands of sequences or without knowing a precise structure. The most exciting thing 

about this approach is that it can be used to engineer almost any enzyme, as long as 

there is a way to test the enzyme’s function. Hopefully this result will not only enable 

further improvements in production of chemicals in cells but accelerate the use of 

machine learning in protein engineering workflows.  
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