

Catalytic Production of Hydrogen, Fuels and Chemicals from Biomassderived Oxygenated Hydrocarbons

James A. Dumesic Department of Chemical & Biological Engineering University of Wisconsin Madison, WI 53706

"Demand for petroleum products in the United States averaged 19.7 million barrels per day in 2004. This represents about 3 gallons of petroleum each day for every person in the country" (DOE annual report 2004)

current and historical global energy mix

Current global energy supply is dominated by fossil fuels - oil has been the largest component of the energy mix for many decades; gas has grown strongly since the 1970's; coal has been growing in the last four years; hydro is constant and nuclear has plateaued

Source: BP Statistical Review

hn

Source: World Energy Assessment 2001, HIS, WoodMackenzle, BP Stat Review 2005, BP estimates

U.S. Energy Consumption: End-Use

Residential, By Major Source

* Electrical system energy losses associated with the generation, transmission, and distribution of energy in the form of electricity. Note: Because vertical scales differ, graphs should not be compared. Sources: Tables 2.1b-2.1e.

Biomass Potential

- 1.3 x 10⁹ (billion) dry tons per year (U.S.)
- Equivalent to 3.5 x 10⁹ barrels of oil (boe)
- 1 boe = 5.8×10^6 (million) BTU = 6.1×10^9 J
- Equivalent to 20 x 10¹⁵ (quadrillion) BTU/year
- U.S. energy consumption = 140×10^{15} BTU/year
- U.S. biomass potential = 15%
- Global Biomass production = 95×10^{15} BTU/year
- Woody biomass production = 40×10^{15} BTU/year
- Global energy consumption = 315×10^{15} BTU/year
- Global biomass potential = 30%

Biomass – Transportation Sector

- Total energy consumed in U.S. = 140 quads
- Residential = 22 quads (16%)
- Commercial = 18 quads (13%)
- Industrial = 32 quads (23%)
- Transportation = 28 quads (20%)
- Electric Power = 41 quads (29%)
- Biomass = 20 quads
- Biomass potential = 70% of transportation

Overview of Routes (at UW) for Biomass Conversion to Hydrogen, Fuels and Chemicals

Production of Hydrogen from Biomass-derived Carbohydrates

Reforming Thermodynamics $CH_4 + H_2O \rightarrow CO + 3 H_2$ reforming $CO + H_2O \rightarrow CO_2 + H_2$ water-gas shift

The Challenge: Can we find catalysts that produce H₂ versus CH₄?

BIOMASS SUGAR-ALCOHOL SORBITOL Catalyst H_2 UNWANTED METHANE

Selectivity Challenges

Alcala, Mavrikakis, Dumesic, J. Catal. 218, 178 (2003)

Reforming of Oxygenates over Supported Metal Catalysts

Aqueous-phase Reforming of Oxygenates over Pt/Al₂O₃

Cortright, Davda, Dumesic, *Nature* **418**, 964 (2002)

Demonstration: Biomass to H₂ over Pt

BIOMASS SUGAR-ALCOHOL (SORBITOL) GATALYSTS PLATINUM: \$ expensive H₂ ÷ C02 UNWANTED METHANE

Non-precious Metal Catalysts

High-Throughput Reactor

High-Throughput Studies of Raney-NiSn

Huber, G.W.; Shabaker, J.W.; and Dumesic. J.A.; "Raney Ni-Sn Catalyst for H2 from Biomass-Derived Hydrocarbons", *Science*, **300**, 2075-2077 (2003)

EG-Reforming on Raney-NiSn: Packed-bed APR Reactor

H ₂ Selectivity %	Alkane Selectivity %	H₂ TOF min ⁻¹	CH₄ TOF min ⁻¹	H₂ Rate μmol cm ⁻³ min ⁻¹
47	33	1.1	0.28	. 360
57	27	1.4	0.23	430
93	5	1.4	0.031	360
98	0	5.3	0	450
	H ₂ Selectivity % 47 57 93 98	H2AlkaneSelectivity%Selectivity%47335727935980	H2AlkaneH2 TOFSelectivity %Selectivity %min ⁻¹ 47331.157271.49351.49805.3	H2AlkaneH2 TOF CH4 TOFSelectivity %Selectivity %min ⁻¹ min ⁻¹ 47331.10.2857271.40.239351.40.0319805.30

AdditionImprovesDecreasesof Sn:H2 selectivityCH4 selectivity

 $Ni_{14}Sn \sim Pt/Al_2O_3$

Catalysts for Biomass Conversion

PLATINUM: \$

GATALYSTS

NICKEL-TIN: inexpensive produces H₂ and CO₂ at platinum levels minimal tendency to produce methane H₂

C02

NICKEL: tendency to continue to produce methalie

UNWANTED METHANE

BIOMASS

SUGAR-ALCOHOL

Virent Energy Systems

10kWe APR/HICE Genset Specifications

(Preliminary)

SuperNatural[™] Gas Properties

Composition (by volume)

Hydrogen:	~30%
Methane:	~10%
Ethane:	-10%
Propane:	-10%
CO.:	-40%
Heating Value:	600 BTU/ft ³

Pressure (exit of APR):

Feedstocks

- Glycerol (50% concentration)
- · Sorbitol (future: late 2006)
- Glucose (future: late 2006)

Integration

- Ford 1.6 liter, 4-Cylinder HCNG ICE/11.5 kW Genset
- Catalytic Burner can supply process heat
- ICE Exhaust heat integration
- · Combined Heat and Power Mode (CHP)
- · Optional PSA or Pd Membrane for pure hydrogen

APR Weight & Dimensions

- 2 m Wide x 1 m Deep x 1.5 m High
- · 725 Kg (without fuel)

APR/HICE Performance at 10kWe output

APR Efficiency: (LHV inputs/LHV outputs)

90%

400-500 psig

- Feedstock Consumption: ~2.2 gal/hr (Glycerol) Gas flow rate into ICE: 90 liters/min
- HICE Genset Efficiency: 32%

APR/HICE System: Distributed Renewable Energy Generation.

- No Fossil Fuels Required. Generate carbon neutral, high energy fuels from renewable widely available biomass-derived feedstocks
- Unterathered Operation. The APR/HICE system can operate Independently from the electrical grid or natural gas supplies.
- Localized Production. On-demand hydrogen and alkanes with low capital investment
- Friendly Operating Conditions. Significantly lower operating temperatures (240°C v. 800°C) allows for feedstock reformation and water-gas shift reaction to take place in one processing slep.
- Simple Purification. Output pressures of APR hydrogen rich effluent (typically 10 to 50 bar) can be
 effectively purified, if desired, using either a pressure swing adsorption or palladium membrane technologies
- Flexible. Can produce multiple fuels and fuel blends tailored to the needs of the power conversion device.

Vapor-phase Conversion of Glycerol to CO:H₂ Mixtures

Sources of Glycerol

- By-product waste-stream from biodiesel production, i.e., trans-esterification of triglycerides, leading to ~80 wt% glycerol in water
- Glucose fermentation, leading to 25 wt% glycerol in water (compared to 5% for ethanol)
- Catalytic hydrogenolysis of xylitol and sorbitol (C₅ and C₆ sugar-alcohols)

Gas at 350°C

Glycerol Reactivity (350°C)

Coupling of Glycerol Conversion with Fischer-Tropsch Synthesis

Fischer-Tropsch Synthesis

Higher hydrocarbons from synthesis gas (H₂:CO) $n CO + (2n+1) H_2 \rightarrow C_n H_{2n+2} + n H_2O$ Typical catalysts include: Fe, Co, and Ru

Coupling Gasification & FT Synthesis					
	$C_3O_3H_8 \xrightarrow{1} 3CO + 4H_2$	83 kcal/mol			
	$2.24(\text{CO}+2\text{H}_2 \xrightarrow{2} \frac{1}{8}\text{C}_8\text{H}_{16}+\text{H}_2\text{O})$	-81 kcal/mol			
0	$.28(C_8H_{16}+H_2 \xrightarrow{3} C_8H_{18})$ -98 -	-10 kcal/mol			
0	$0.76(CO+H_2O \xrightarrow{4} CO_2+H_2)$	-7 kcal/mol			
C ₃	$_{3}O_{3}H_{8} \xrightarrow{5} 0.28C_{8}H_{18} + 0.76CO_{2} + 1.48H_{2}O_{3}$	-15 kcal/mol			
C ₃	$_{3}O_{3}H_{8}+3.5O_{2}\longrightarrow 3CO_{2}+4H_{2}O_{3}$	-354 kcal/mol			
	$\frac{\Delta H_1}{\Delta H_c(Gly)} = 24\% \qquad \frac{\Delta H_5}{\Delta H_c(Gly)} = -4\%$				

Reforming Catalysts

- Fischer-Tropsch synthesis typically carried out at 500 – 550 K (and 10 – 50 bar)
- Heat must flow from FT to reforming catalyst (Temperature for FT > T for reforming)
- Pt/C not active below ~573 K
 - $-\Theta_{CO}$ increases as T decreases
 - Additives needed to lower adsorption energy of CO on Pt
- Surface alloys may be useful!!

d-band shift Nørskov et al., J. Catal. 199, 123 (2001) Pt

Glycerol Conversion: Pt-Ru & Pt-Re

Soares, Simonetti, Dumesic, Angewandte Chemie 45, 3982 (2006).

FT Data at 275°C & 10 bar

Dante and the FT product

Production of Value-added Chemicals from Carbohydrates: HMF* from Hexoses

* Hydroxymethylfurfural

"HMF and its oxidation product 2,5-furandicarboxylic acid are so called 'sleeping giants' in the field of intermediate chemicals from regrowing resources."

* M. Bicker, J. Hirth and H. Vogel, Green Chemistry, 2003.

Dehydration Reaction Pathways

Fragmentation Products A

Additional Dehydration Products

Approach to Achieve High Selectivity for HMF

HMF selectivity vs Extraction Ratio

Thank you for your attention Questions?

acid

sikaues

APD/H

metal

base

